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Abstract 
As humankind embarks on longer space missions farther 
from home, the requirements and environments for 
scheduling the activities performed on these missions are 
changing. As we begin to prepare for these missions it is 
appropriate to evaluate the merits and applicability of the 
different types of scheduling engines. Scheduling engines 
temporally arrange tasks onto a timeline so that all 
constraints and ob.jectives are met and resources are not 
overbooked. Scheduling engines used to schedule space 
missions fall into three general categories: batch, mixed- 
initiative, and incremental. This paper, presents an 
assessment of the engine types, a discussion of the impact of 
human exploration of the moon and Mars on planning and 
scheduling, and the applicability of the different types of 
scheduling engines. This paper will pursue the hypothesis 
that incremental scheduling engines may have a place in the 
new environment; they have the potential to reduce cost, to 
improve the satisfaction of those who execute or benefit 
from a particular timeline (the customers), and to allow 
astronauts to plan their own tasks and those of their 
companion robots. 

Introduction 
The National Aeronautics and Space Administration 
(NASA) is charting a bold new course into the cosmos, a 
journey that will take humans back to the Moon, and 
eventually to Mars and beyond. Currently, operations is 
the most expensive part of many space missions; the cost of 
operating the lnternational Space Station (ISS) is in excess 
of one billion dollars per year. Current planning and 
scheduling methods need to be replaced with automated 
methods. In addition, every avenue should be taken which 
can reduce the stress and tedium endured by astronauts. A 
mission to Mars is expected to take about two years; and, 
during much of  the mission, light-time delays (typically 10 
to 15 minutes) will negate voice conversations with the 
ground. One good way to address these human factors 
issues is to give the astronauts control over their daily 
schedule. The current “job-jar’’ paradigm used on the ISS 
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only allows the astronauts to select additional optional 
tasks which use limited resources. True astronaut control 
would allow them to schedule or re-schedule most tasks. 
For some foreseeable contingencies, complete crew 
autonomy in planning and scheduling may be required. 
The scheduling systems of the future must be able to handle 
both the complexity of the tasks and procedures (to ensure 
a valid schedule) and the flexibilities of the procedures and 
the equipment (to effectively utilize available resources). 

Scheduling Overview 
Planning and scheduling software temporally arranges tasks 
onto a timeline so that all constraints and objectives are met 
and resources are not overbooked. The scheduling unit or 
scheduling request addressed by the scheduling software is 
an “operations sequence” containing multiple tasks and the 
temporal relationships between the tasks. 

Example: Dinner is a scheduling unit, which includes 
tasks that prepare dinner, eat dinner, and cleanup. All 
tasks must be done and they have temporal 
relationships; each follows the other. 

In the space activity domain, temporal relationships such as 
sequential, overlap, during, and avoid are common. 
Additionally the operations sequence can have parallel 
paths, repetitions, and other arrangements. In the domain 
of human space flight, operations sequences are often 
networks, with embedded sub-networks. To emphasize the 
complexity of the problem, the term task networks will be 
used for the remainder of this paper. A task network with 
only one task and no temporal relationships is the trivial 
case of a network, and is the simplest scheduling unit. 
The tasks of a task network use resources. In the dinner 
example, each task would use several resources (power, 
microwave oven, water, food stock, waste disposal, etc.). 
Tasks might also have condition requirements which 
constrain the scheduling to happen berore, during or after a 
certain condition, such as in daylight. 
The computer representation of a scheduling unit and its 
components is called a model. The quantitative and 



associative values in a model are expressed either as rules 
or as fields in a dynamic hierarchy of forms. 
The planning system’s core logic, or scheduling engine, 
must understand the models and must temporally arrange 
multiple complex task networks to generate a valid 
schedule. In the space activity domain scheduling engines 
use algorithmic, heuristic, artificial intelligence, and 
human-assisted techniques to solve the space scheduling 
problem. 

Classes of Scheduling Engines 
Scheduling engines are generally considered to be “batch,” 
“incremental,” or “mixed-initiative’’ based on how they 
handle multiple scheduling requests. See Figure 1. 

Batch Scheduling Engines 
Batch engines accept a batch of independent scheduling 
requests and put them on a timeline by assigning the start 
and stop times of each task. The tasks to be scheduled are 
often associated only by the use of the same resources. 
Batch engines search for an optimum or near-optimum 
timeline based on analytical, heuristic, algorithmic and/or 
artificial intelligence techniques. The search methods used 
by batch engines must simultaneously meet the 
requirements of many tasks and many independent 
temporal networks. This implementation places a 
limitation on the modeling schema and is computationally 
intense. 
Schedule-repair engines are a special case of batch engines; 
the batch of requests fed to the engine is the tasks already 
on a timeline, but having constraint violations. 
The primary attribute of batch schedulers is the ability to 
optimize the use of resources and maximize value of the 
timeline. In fact, of the three classes of scheduling engines, 
only batch engines can produce near-optimum timelines. 
For this reason they are the engine of choice for unmanned 
space probes and similar missions. 

makes choices based only on scheduling the current 
request. Like batch engines, these engines may use 
analytical, heuristic, algorithmic andor  artificial 
intelligence techniques. The logic required to handle the 
temporal networks of a single scheduling request is less 
difficult to develop than the logic required by batch engines 
which need to handle all the temporal networks in the 
timeline. As a result, the models presented to an 
incremental engine can be more complex and can capture 
more of the requirements or can capture the requirements 
more accurately. 
As an incremental scheduling engine schedules a request, it 
behaves like a batch engine with respect to the multiple 
tasks of the scheduling requests. However these tasks 
always have temporal relationships to each other and may 
share the same resources. All tasks scheduled by previous 
scheduling requests are locked and the residual resource 
profiles are treated as initial resource profiles for the 
current request. 
Incremental engines do not provide global optimization. 
However, a “Monte-Carlo’’ technique is available to 
overcome this limitation. Multiple schedules can be 
produced by submitting the scheduling request in different 
orders; a figure of merit can be assigned to each schedule; 
and the best schedule chosen as the solution. Heuristics 
and analytical logic can be applied to find a submission 
order which gives good results. 
One novel use for incremental engines arises when multiple 
users are building a single timeline; the engine allows each 
user to add tasks and be sure that subsequent action by 
other users will not change the times of those tasks. Later 
this paper presents an in-depth discussion to two possible 
uses of incremental scheduling engines that exploit this 
feature. 

Mixed Initiative Scheduling 
Mixed-initiative scheduling refers to building a timeline 
using a timeline editor; Le., it is a manual process. Mixed 
initiative is used when the user knows requirements that are 
not described in the requests, the scheduling engine is 
weak, oniy a few new requests are to be added to the 
timeline, or the user wants to control the results. If the user 

characteristics of a batch scheduler; if the doesn’t 
already-scheduled tasks, then mixed initiative has the 

characteristics of an incremental scheduler. 

Incrementai Scheduiing Engines 

timeline without adjusting the times of already-scheduled 
tasks and without introducing constraint violations or 
resource overbooking. The core logic of an incremental 
engine is usually some form of a greedy algorithm; that is it 

hcremental engines add each scheduling request to a moves already-scheduled tasks, mixed initiative has 

t 

Figure 1 - Classes of Scheduling Engines 



Mixed-initiative schedulers usually have code to help the 
user avoid violating constraints and often allow the user to 
override constraint limits. In the batch flavor, if the models 
are complete, the editor might invoke iterative-repair logic 
to move other tasks and eliminate constraint violation 
introduced by a manual edit. In the incremental flavor, the 
editor might invoke an incremental scheduler to make 
slight adjustments to the user’s input; this feature is called 
“snap-to.” Additionally, the editor might use an 
incremental engine to suggest times where tasks can be 
placed without introducing constraint violations. 
Mixed-initiative scheduling does not automatically provide 
global optimization. However if the human user is an 
expert and the problem is straight-forward, global 
optimization might be achieved. 
Currently, all human space missions are scheduled using 
mixed initiative. 

Reducing Costs 
Customer participation in ISS operations scheduling is an 
example of reducing costs by using an incremental 
scheduling engine. This example assumes the use of an 
incremental engine accessed via the web by the users of the 
timeline - each user would schedule his tasks without fear 
that the tasks will be moved. 
In this example, use of the scheduling engine is distributed 
to the actual timeline customers (those who benefit by the 
execution of the timeline, such as scientists, technicians, 
systems operators, or others who have a stake in the 
mission). Customers access a central installation of the 
scheduling system using remote access technology. An 
overview of the operations concept is shown in Figure 2. 
The example concept has a weekly scheduling phase that 
produces the timeline to be executed during the second 
week after it is produced. During any week, three actions 
are occurring: the week after next is being scheduled, next 
week is being prepared and up-linked, and the current week 
is being executed. The preparation phase is closely linked 
to what equipment is on board, which is linked to crew 
charge-sui VI tiit: arrivai of a re-suppiy ship. In ISS 
nomenclature an ”expedition” is a period of time that is 

punctuated by a crew change-out; nominally, an expedition 
is 90 days. The preparation phase for an expedition 
precedes the start of the expedition; the scheduling phase 
begins two weeks before the expedition starts and 
continues for the duration of the expedition. 
During the preparation phase, the customers define what 
equipment they need andor will supply and how it is to be 
used. The cadre creates the equipment mode models based 
on the customers’ needs and the cadre’s own knowledge of 
how the equipment is installed in the ISS. Models may 
later be updated by the cadre as needed. Additionally, a 
high-level plan for the expedition is generated based on 
customer input, programmatic goals and constraints, and 
various agreements with the partners. 
Based on the expedition plan produced during the 
preparation phase, and other information, the cadre would 
generate daily allocations per payload for the week to be 
scheduled. The allocations are not usage profiles but are 
total usage limits of each resource during the planning 
week. Once the system is initialized with all the resource 
constraints, the customers use the incremental scheduler to 
produce a timeline. As always, producing a good timeline 
requires attempting to schedule a model, rejecting 
unacceptable results, tweaking the models, and trying 
again. The incremental scheduler places the customer in 
the middle of this important iteration loop. No one knows 
the payload requirements or what is desired in the timeline 
better than the customer, and no one can produce a timeline 
as good as the one the customer can produce. 
After the customer has completed the scheduling process, 
the timeline is delivered to the cadre for timeline 
verification. Verification consists of checking that safety 
and other criteria are not violated. The cadre will also 
visually inspect the timeline and the models. 
After the timeline is verified, it is passed to the integration 
function where it is integrated with timelines from other 
ISS partners. Simultaneously, it is “published” so that the 
customers can review the timeline. If a customer wants to 
have the schedule changed, an execution change request is 
written and submitted to the execution team. Since the 
customer just produced the schedule (of his pay!oad), it is 
unlikely that changes will be required. 

Customers Cadre 
Equipment Equipment 

requirements 

System & 
Configuration 

Knowledge 

Cadre 
High-level 

Customers 
High-level 
objectives 

Preparation Phase 

Figure 2 - Customer Participation Operations Concept 
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installation of the scheduling system and allow adding to 
the timeline during outside excursions. 
Earth-based controllers can also remotely access the 
extraterrestrial scheduling system to inspectherify the most 
current timeline information or to contribute timeline 
changes. To preserve precious crew time, it is envisioned 
that most extensive re-planning efforts will be performed 
by the earth-based controllers, except in those cases where 
communications outages or delays preclude a timely 
ground response to a real-time event. The earth-based 
controllers may also perform timeline edits at the crew’s 
request. 

Astronaut Participation 
Astronaut participation will be important on long-duration 
human missions. On short flights like those of the Space 
Shuttle and intermediate duration missions like an ISS 
expedition, the activities of the crew are primarily 
scheduled by the ground controllers. Lack of crew 
planning autonomy has been a topic of discussion for 
decades, and there is anecdotal consensus among astronauts 
that crew autonomy is a good way to mitigate the stress of 
long-duration missions. Incremental schedulers have the 
potential to allow true astronaut participation in planning 
their own daily schedule. One possible implementation is to 
co-locate the scheduling engine with the astronauts, and 
ground support personnel (controllers, scientists, and 
others) would remotely access the extraterrestrial engine. 
See Figure 3.  
An earth-based engine is used to build baseline models and 
timelines. The space-based engine is used to update the 
timeline; these updates can be made by the astronauts or by 
earth-based personnel using the remote access capabilities 
of the incremental scheduler. This concept provides the 
astronauts with a complete set of up-to-date planning 
information, and allows them to make any additions they 
desire to the currently executing timeline. 
The level of astronaut participation in the scheduling 
process will be dictated by necessity (e.g., responding to 
real-time events) as well as by their personal preferences. 
In effect, the concept provides an infrastructure which 
allows multiple parties (astronauts and ground personnel) 
to simultaneously contribute to the development/ 
maintenance of a single timeline. 
Once the planning information is within the scheduling 
system at the extraterrestrial site, it will be available for use 
by the onboard astronauts. From a local console, they will 
be able to viewhspect their timelines, make timeline 
changes (by deleting and rescheduling), schedule additional 
“job jar” type tasks via an interface to the incremental 
scheduling engine, and even edit the modeled tasks (e.g., 
change 2 sp.cifprl_ task rl_;ratinn). P.2 interfzlce y 1 ~  a 
personal data assistant could provide access to the habitat 
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Figure 3 - Crew-Participation Operations Concept 

Conclusion 
NASA is charting a bold new course to explore the cosmos 
beginning with humans returning to the Moon and 
anticipating a human visit to Mars. Without significant 
advances in operations concepts, these missions will be 
more expensive than necessary. Additionally, there is a 
compelling need for astronaut autonomy to address human 
factor issues and contingency issues introduced by light- 
time delays. 
Of the three classes of scheduling engines (batch, 
incremental, and mixed initiative), incremental engines 
offer significant promise to reduce cost and provide 
substantial astronaut participation. The attributes of 
incremental scheduling engines which enable cost 
reduction and astronaut participation are: 

The logic of the engine can handle more 
complete/complex models because it schedules only one 
model at a time. More complete models mean that less 
information is maintained outside of the model and less 
mixed-initiative scheduling is needed. 
The scheduling cadre does not need to be experts on the 
objective of the temporal networks being scheduled. 
They only need to provide knowledge of the hardware 
and the vehicle/habitat systems. 
Astronauts do not need to be experts on the tasks within 
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the scheduling engine and, since the model contains all 
the requirements, produce a valid schedule. 
Users can add to the timeline without danger of 
modifying what is already scheduled. For example, 
ground controllers are assured that astronaut additions to 
the timeline do not impact critical tasks. 
A user who is scheduling a given model does not need to 
know anything about other models or what is already on 
the timeline. 
The independent handling of each scheduling request 
allows simultaneous remote access to the scheduling 
engine by multiple users. Thus, scheduling can be 
distributed to those who have the best knowledge and 
vested interest in producing a good timeline. 
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